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The combustion of a moving liquid fuel drop has been investigated. The drop 
experiences a strong evaporation-induced radial velocity while undergoing slow 
translation. In view of the high evaporation velocity, the flow field is not in the 
Stokes regime. The combustion process is modelled by an indefinitely fast chemical 
reaction rate. 

While the flow and the transport in the continuous phase and the drop internal 
circulation are treated as quasisteady, the drop heat-up is regarded as a transient 
process. The transport equations of the continuous phase require analysis by a 
singular perturbation technique. The transient heat-up of the drop interior is solved 
by a series-truncation numerical method. The solution for the total problem is 
obtained by coupling the results for the continuous and dispersed phases. 

The enhancement in the mass burning rate and the deformation of the flame shape 
due to drop translation have been predicted. The initial temperature of the drop and 
the subsequent heating influence the temporal variations of the flamefront standoff 
ratio and the flame distance. The friction drag, the pressure drag and the drag due 
to interfacial momentum flux are individually predicted, and the total drag behaviour 
is discussed. The circulation inside the drop decreases with evaporation rate. A 
sufficiently large non-uniform evaporation velocity causes the circulation to reverse. 

1. Introduction 
The study of drop combustion is an important step in understanding, designing 

and evaluating the performance of combustion systems. Here we investigate the 
hydrodynamics and heat/mass transfer associated with the burning of a fuel drop 
that is translating in an oxidant environment. The effect of translation is brought 
into focus through its introduction as a perturbation to an otherwise stationary 
burning drop. The convective flow is such that an envelope diffusion flame is 
established. 

There are many excellent and authoritative reviews on the subject of drop 
combustion (Williams 1973; Faeth 1977; Law 1982; Buckmaster & Ludford 1982; 
Sirignano 1983; Williams 1985). Of particular relevance to this study is the 
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theoretical work of Fendell, Sprankle & Dodson (1966), who considered drop 
combustion in the presence of a forced flow field that was entirely in the Stokes 
regime. However, in view of the large magnitude of the radial velocity (induced by 
evaporation) that usually accompanies drop burning (Law 1982), this restriction may 
not be met. 

In the present study the effects of large radial velocity on a moving burning drop 
are examined by retaining both the viscous and the inertial terms in the governing 
equations. The effects of initial heat-up of the drop on combustion quantities of 
interest such as flamefront standoff ratio, flame distance and interfacial heat 
transport have been investigated. We approximate the continuous phase as quasi- 
steady while the dispersed phase is unsteady. The quasisteady nature of the con- 
tinuous phase admits an asymptotic approach. The corresponding energy and species 
equations in Shvab-Zeldovich variables are solved through a singular perturbation 
matched-asymptotic technique. The transient heat-up of the drop interior is solved 
by a series-truncation method and is carefully matched a t  the interface with the 
continuous-phase solutions. 

In $2  the density is evaluated at a suitable reference level of temperature. Later 
this assumption is relaxed and the effects of variable density on the mass burning 
rate and the drag the drop experiences are investigated. 

2. Thin-flame theory: constant density 

2.1.  Theoretical formulation 

Consider a single-component fuel drop of initial radius R, translating at  an initial 
velocity U,, , ,  with a fully developed internal motion, in an infinite expanse of 
oxidant. The drop is initially cold at a temperature T,. The ambient temperature T, 
and the oxidant mass fraction ( y o ) ,  are prescribed. The convective flow is slow, so 
that an envelope flame is established. An indefinitely fast chemical reaction rate is 
assumed for the combustion process. The burning zone may then be modelled as 
a mathematical interface where the reactants meet in stoichiometric proportion 
(figure 1). 

The gas-phase processes and the drop internal motion will be assumed to be 
quasi-steady. However, the liquid heating will be treated as transient (Sundararajan 
6 Ayyaswamy 1984). The drop shape is considered to be spherical throughout this 
combustion study. This is because the Weber number and the Eotvos number are 
very small. For analytical convenience, the density is considered fixed and is 
evaluated at a reference temperature. A single effective binary diffusion coefficient 
D, is used for all pairs of species (Knuth 1959). Further simplification in the analysis 
results if the Shvab-Zeldovich formulation is employed, which requires that the 
Lewis number be unity. Natural convection and second-order diffusion effects are 
considered negligible. 

With these approximations, we write the governing equations as follows. 
For the gaseous phase 

v - u  = 0, 
u - v u + - u p  1 = V g V 2 U ,  

Pa 
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FIQURE 1. Geometry and coordinate system. 

where o is the reaction rate for the process 

In the above, u is the velocity, T is the temperature, Yo and YF are the mass fractions 
of oxidant and fuel, p is the pressure, vo, vF and vpf are the stoichiometric coefficients 
of oxidant, fuel and the ith product, AHc is the specific heat released through 
combustion, 

N-2 

(-1 
A H c =  WoVoho+WFvFh,- Z WpiVpfhpi 

5 FLM 171 
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ho, hF and hpt are the specific heats of formation of oxidant, fuel and the ith product. 
Wo, WF and W,, are the molecular weights of oxidant, fuel and products, and pg. c p g  
and vg are the density, specific heat and kinematic viscosity of the mixture. 

The liquid-phase equations (subscript 8 denotes liquid side) are the same as in 
Chung, Ayyaswamy & Sadhal (1984, hereafter referred to as I ) .  

We now put the governing equations in dimensionless form. The velocity and 
pressure for both phases are perturbed and made dimensionless as in Sadhal & 
Ayyaswamy (1983). The other dimensionless or stoichiometrically adjusted variables 
are defined as follows: 

where a, is the liquid-phase thermal diffusivity and R is the instantaneous radius of 
the drop. Omitting asterisks, the quasisteady gas-phase equations in Shvab-Zeldovich 
form are 

V.U‘ = 0, P a )  

( 2 b )  

(2c)  

( 2 4  

A,,(u’ - vu, + I(, * VU’) + E(U’ * VU’) + Vp’ = VZU‘, 

SC ( A , , u , + E u ’ ) ~ V ( T +  Yo)-V2(T+ Yo) = 0 ,  

SC(A, ,U,+EU’)‘V( YF- Yo)-V2( YF- Yo) = 0, 

where Sc = vg/Dg is the Schmidt number and E = U ,  Rlv,  and A,, = A,  Rlv,  are the 
instantaneous ‘translational ’ and ‘evaporation ’ Reynolds numbers respectively. A ,  
denotes the radial velocity a t  the drop surface in the absence of translation and L‘, 
is the instantaneous velocity of drop translation. A,, U, is the purely radial flow field 
and eu’ represents the change in the flow field due to drop translation. In  this paper 
we investigate situations for which e < 1. However, A,, could be O( 1). In view of this. 
the complete flow field is not in the Stokes flow regime. The governing equations for 
the liquid side are as in I. 

The initial and boundary conditions in dimensionless form are as follows. 

Initial condition 

Far-field conditions ( r - t  CO) 

T,= T, at t = O ;  

xJ+ (y,),, 
T+T,,  

U,+E case, uO+-e sine; 

Interface conditions (the subscript s indicates interface) : 

(i) continuity of tangential velocity 

# v ~ . Z O  = U / * Z e B .  

(ii) continuity of shear stress 

(3) 
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(iii) temperature continuity 

(iv) interfacial heat balance 
T = Td 

(v) impermeability condition 

(vi) Clausius4lapeyron equation 

The condition of axisymmetry is applied for all solution variables on the axis of the 
drop. For 8 = 0 and x 

i3T aYF - aYo - aur - a ~  - - u ---- 
8 -  ae ae ae ae ae 

In the above 

L is the latent heat of evaporation, Tb is the boiling temperature of the fuel 
corresponding to the prevailing pressure p, k is the thermal conductivity, ,u is the 
viscosity, Ro is the universal gas constant and WNF is the average molecular weight 
of the non-fuel species. 

According to the BurkeSchumann model, 

Y F = O  ( $ < r i m ,  

( 6 b )  

) 
Y,=O ( 1  +), 

where R, is the flame position, which is to be determined by applying (6a, b) to the 
solution of (2c ,  d). 

2.2. Gus-phase energy and species equations 
In  a different context, the solutions for the flow field for order e have been given by 
Sadhal & Ayyaswamy (1983). We use those solutions and proceed to solve the energy 
and species equations. For convenience, we d e h e  
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7 i a  (r2G) ag +p i a  [ (1 -p2 )  $1 = Sc [@+ eulr) :-E? (1 -,u 2 ).-I, 1% (8) 
a,u 

with a similar equation for h. The quantities ult and ulB are the flow-field solutions 
of order E (see I) and ,u = cos 8. The boundary conditions are 

(9a) 

- s c  [Aoo + SUl,] [OIF + ( Yo), - h] = - ( 9 4  

(10) 

ar ah J 
g + O ,  h+O as r + m .  

Axisymmetry requires that 

The equations are expanded in terms of the small parameter E ,  and Legendre 
functions ofp and are solved in a manner similar to that in I. Owing to the structural 
similarity between the two equations governing the functions g and h, the solution 
techniques for both cases are the same. Therefore only the details for the solution 
of g are provided. We assume general forms for the inner expansions to be 

W C O W  

The boundary conditions at the interface are given by (9a-c). However, we shall first 
assume arbitrary values imposed at the interface, such as 

W o o  

In the above, Pm(p) is the Legendre polynomial of order m. Next, we introduce 
6 = re as a strained radial coordinate for the outer region and consider outer - 
expansions of the form 

W 

P,  E )  = Z Fn(E) y ) .  
n -0 

The complete zeroth-order solutions are 

e- Aoolr - 1 
go(r, ru)  = gsoo e-Aoo - 9 

where Aoo = AooSc. The next-order inner solution obtained from (12) is of the form 
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Here it is sufficient to retain only terms corresponding to m = 0 and m = 1, because 
the velocity field is calculated up to m = 1 .  The solutions are 

Zll(r) = ~ C , , + P ~ ~ ~ ~ e ~ A ~ ~ ~ r ~ r + + A , , ~ +  [~ , ,+T(r) l  (r-tA,,), (19)  

where c, V(r),  v(r) and the constants of integration C,,, C,,, C,, and C,, are as given 
in I, with gsoo, g,, and g,,, replacing tiOO, ti,, and ti,, respectively. We may now obtain 
a uniformly valid expression for the function g as 

The solution for the coupling function h is identical with that for g, except that 
gSOO, gsol and g,,, should be replaced by h,,,, h,,, and h,,, respectively. 

The normal velocity at  the drop surface is given by u, = A , , + E ( A , , + ~ A , , ) .  It is 
related to the transformed fuel mass fraction (function h) a t  the drop surface through 
the impermeability condition ( S c ) ,  

s c  

where the constant 8 is given in I. 
In the above equations the quantities h,,,, h,,, and h,,, are related to the drop 

surface temperature through (7 b )  and the Clasius-Clapeyron equation (5 f ). In view 
of (13) ,  the fuel mass fraction and temperature at the drop surface can be expanded 
as 

Substituting these expressions into (5 f )  and expanding in 6, we obtain 

aF exP[x(&-$] 
h,,, = ( Yo), + 

rw-(rw-l)exp 

rn 

The quantities T,,, T,, and T,, are obtained from the transient solution of the drop 
interior. The quasisteady flow and transport solutions may then be obtained for any 
time. The solution procedure for the transport inside the drop is described in $2.3. 
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2.3. Transient heat-up of the drop interior 
We adopt the semianalytical method of series truncation for the transient solution 
of the liquid phase. The details are described in I, with gc and g replacing Td and T. 
The solution provides an updated temperature profile for both the drop surface and 
its interior. With this new drop-surface-temperature solution, the continuous-phase 
calculation for the new time-step may be effected. 

2.4. Phyeical quantities 
In this subsection, equations are presented for obtaining the stream function, the 
drag experienced by the drop, the mass burning rate, the interfacial heat transport 
and the velocity of the drop moving in gravitational field. The dimensionless stream 
function for the continuous phase is given by 

_-  ” - u,r2 sine, = -uer sine. ae ar 
Similar expressions hold for the liquid side. The drag force on the liquid drop 
(non-dimensionalized with the Stokes drag 6xp0 U ,  R )  consists of contributions from 
the viscous stresses, the pressure field and the momentum flux at the interface. These 
contributions to the drag may be written as follows 

viscous drag 

pressure drag 

drag due to the momentum flux at the interface 

1P, =:{-&(3+A11)+ [3+2#,  +2#,)1 [(A,,  + 4,) e - A ~ ~ - ~ o o  +i4,1 
- 1 + f (  3 + 2#,J A:, + ( 1 + A,, - gP A:,) e-Aoo 

(25c) 

( 2 5 4  

total drag 

where C is defined in I. 
The mass burning rate (dimensional) at the droplet surface is given by 

1 
riz=2xR2p % J  u,.(l,p,e)dp, 

B R  -l 

Substituting the expansion for the radial velocity into (26) ,  

riz A01 

m0 A00 
,= l + ~ - +  ..., r i z , = 4 ~ R / ~ ~ A ~ ~ .  

The evaporation constant K is defined as 
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Using (27) and (28), the drop regression rate is given by 

Here B and Do refer to the instantaneous and initial drop diameters. 
The dimensionless heat transferred from the continuous phase to the drop is 

The heat required for fuel evaporation is 

sc A,, + €Ao1 q =-- 
Ja R,/R * 

Interfacial heat balance provides an equation for the heat ql transported into the 
liquid side: 

The above heat-transfer quantities have been non-dimensionalized with 
4nR k AHc/ W,c,,. Balancing the forces acting on the drop (weight, drag, buoyancy 
and inertia), an equation for the velocity of the moving drop is obtained. In 
dimensionless form, 

Qt = Qg-qe-  (304 

0 .  g 

where U ,  has been made dimensionless with vg/Ro. Prl is the liquid-phase Prandtl 
number and g here is the acceleration due to gravity. 

3. Thin-flame theory: variable density 

3.1. Theoretical formulation 

The fixed-density assumption in $2 is a restrictive one, since temperature variations 
induce changes in the density of the same order of magnitude. Indeed, such an 
assumption has often been made in order to study the thermodiffusive properties of 
flames. However, if the interaction of the hydrodynamic field and the associated heat- 
and mass-transfer problem is of primary interest, a fixed-density model is insufficient. 
In this section we investigate the effects of variable density on the mass burning rate, 
the circulation inside the drop and on the drag that a moving isothermal burning 
drop experiences. The method of approach is the same as before. Since the effect of 
a translational motion has been introduced in our study as a perturbation to an 
otherwise stationary burning droplet, the scheme used in $2 could be applied to a 
variable-density flow field as well because the underlying radial flow field (the leading 
term in the expansion) is known for a variable density. However, the results of Sadhal 
& Ayyaswamy (1983) for the velocity field are not applicable to the variable-density 
problem. 

We non-dimensionalize the density pg(r ,p)  with pg as defined in $2. The overbar 
indicates that the density is the considered variable. The Shvab-Zeldovich variable 
g is defined as before, but T, is replaced by q,. The pressure is perturbed similarly, 

P-Pa3 = PO+P', Pt-Pa2 = Pco+P;, 
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and scaled as follows: 

All other quantities are non-dimensionalized as in $ 2 .  The product - of the density and 
the mass diffusivity has been taken as constant (jsBDg = pg,  , Dg, ,). The combustion 
approximation is adopted, i.e. the pressure is constant everywhere except in the 
momentum equation (Buckmaster 6 Ludford 1982). The governing dimensionless 
equations under these circumstances become as follows. 

For the gaseous phase 

V . D g u ]  = 0 ,  (32a)  

p , u . v u  = -Vp+V2u++V(V.u), (32b) 

8c j igu-vg-v2g  = 0 ,  (32c)  

Rcjigu.Vh-V2h = 0 ,  ( 3 2 4  

P,,coT, = PgT, (32e)  

where 

The Mach number 

(in dimensional quantities) is very small; here y = cpg/cvg the ratio of specific heats. 
For the liquid phase the same equations governing the flow apply. However, some 

boundary conditions are modified owing to the variable density. These am as follows : 

heat-flux continuity 

impermeability condition 

(34a)  

(34b) 

(34 c )  

(34d)  

( 3 4 4  

(34 . f )  
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Substitution of the inner expansions (34a-e) into the governing equations (32a-e) 
leads to  the sphericosymmetric problem and two boundary-value problems of order 8. 

The zeroth-order problem is solved analytically. The radially symmetric terms of 
order s lead to a linear two-point boundary-value problem. It is solved analytically 
through matching with the outer solution, and an expression for the mass burning 
rate is provided. The second problem is a two-point linear boundary-value problem 
which describes deviation from radial symmetry due to the presence of forced 
convection. The solution is obtained numerically and provides the modification to  
Stokes drag due to  mass transfer. The analytical zeroth-order solution is used to 
facilitate computations. The boundary conditions as r + 00 are provided from the 
outer-problem solution, which is obtained analytically. The governing equations for 
the leading-order outer problem are obtained by substituting (35a-e) into (32a-e). 

3.2. Lowest-order inner and outer solutions 
The zeroth-order sphericosymmetric problem is governed by the following set of 
equations : 

d 
dr  -(r2pou0) = 0, ( 3 6 4  

with a similar equation for h,. 

POT, = P g ,  COT,, 

subject to  the following conditions a t  r = 1 : impermeability gives: 

heat-flux continuity gives 

(37b) 

where gD = T,, - T, - ( Yo), and &, = A,, &. The Clausius-Clapeyron equation is 
given by (23 a) .  
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The governing equations for the outer leading-order problem are 

v8’3x+pg, a, v8. u = 0, ( 3 8 4  

(38b) 
- 
PP,  m 3*v,u= -V,P+y7, (Vs .  U)-v,x (V,X v), 

L!TC~~,~,P-Q,C--V~G= 0, (384 

f l C & , f . v 8 H - V ~ H =  0, ( 3 8 4  

p g , , [ g D ~ + H ] + T , ~  = 0 (state). (38e) 

As a+ co all dependent variables vanish. This condition together with the interface 
conditions (23a) and (37a, b )  and the matching requirement for all variables provide 
the necessary relations for the solution to  the inner and outer problems of leading 
order. 

The inner lowest-order solution is presented next. From continuity, 

r2pouo = p,(l) = M,. (39) 

Owing to  the combustion approximation, the momentum equation (36b) is decoupled 
from the rest of the set. It solution can provide the pressure distribution if desired. 
The solutions to the Shvab-Zeldovich variables g and h are obtained as in $2 : 

with a similar expression for h,. Heat-flux continuity leads to 

The Clausius-clapeyron equation (23a) together with (41) and (42) are employed in 
an iterative procedure, which provides the drop surface quantities. The spherico- 
symmetric Aamefront standoff ratio Rf,/R is obtained using (6a, b )  and h,: 

- Rf, 
R (43) 

The state and continuity equations provide the radial dependence of po and u,. 
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The outer solution is obtained following Fendell, Coats & Smith (1968). As 6+0 

where 

3.3. Modiification of the mass burning rate 
The dimensional mass burning rate is given by 

1 

m = 2xRpg J pg(1,p)ur(1,p)dp. 

,= m l + €  PO(1) UOl(1) + A00 POl(1) 

-1 

Substituting (34a, c) into (46), 

A00 PO(1) 
7 

m0 
(47 ) 

where rizo (= 4xRpgA00p0(l)) is the sphericosymmetric mass burning rate. The 
modification to the mass burning rate in the presence of forced convection depends 
on the radially symmetric terms uol and pol, which can be found independently of 
the terms associated with computation of drag. The first-order problem governing 
these terms is described next, and the solution is obtained through matching with 
the outer solution. 

(484  
d 
- dr [r2(Po uo1+ ~ O O P O l  u0)l = 0, 
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Pg, 00 l r n  

subject to the following conditions at r = 1 : heat-flux continuity gives 

impermeability gives 

dr 
A= ( l )  & {A00 Po( 1) h,,, - [A,  POl(1 ) + P O (  1) UOl(1 11 1% + ( y,), - ~ 8 0 0 1 ~ .  (49b) 

The Clausius-clapeyron relation is given by (23b). From matching with the outer 
solution (as r+ 00)  

with a similar expression for hol, and 

as r + m .  

MOl 

uo1 +o, 

Po1 +o. 
Integrating the maw continuity equation gives 

Po uo1+  A00 Po1 uo = yz * 
Then (4th) becomes 

where 

The solution to (51) is obtained through the method of variation of parameters: 

Owing to the structural similarity, the solution to h is also given by (52) and (53a, b), 
with hsoo and, hsol replacing gsoo and gsol respectively. 

Using heat-flux continuity, 
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The Clausius-Clapeyron equation (23b) together with (54) and (55) are employed in 
an iterative procedure, which provides the drop surface quantities. Combining (47), 
(50) and (54) gives 

3.3 Modification to Stokes drag due to muss transfer 
The dimensional drag force experienced by the drop is given by 

where I is the unit tensor and Q is the stress tensor given by 

Q = pg[Vu+ (VU)T]-g.Ug/(V'U). (58) 

The drag is non-dimensionalized with the Stokes drag 6zpg U ,  R. Substitution of 
(34u-e) leads to the following expressions for the three contributions to the drag 

pressure drag 
Fp = -%11(1), 

drag due to momentum flux at the interface 

Equations (59)-(61) indicate that the radially symmetric terms of order E do not 
contribute to drag computations. Evaluation of the drag components necessitates 
solution of an eighth-order two-point boundary-layer problem obtained by substitu- 
tion of (34 u-e) into the governing equations (32u-e). The boundary conditions as 
r-f 00 are derived from matching with the outer solution (45u-e). The boundary-value 
problem is given next in a form appropriate for numerical computation: 

state 
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with a similar equation for h,,, 

G. Gogos, S. 8. Sadhal, P.  S .  Ayyaswamy and T .  Sundararajan 

where 

From the thin-frame approximation (6a, b) 

subject to the following conditions at  r = 1 : heat-flux continuity gives 

and impermeability gives 

A= dh ~ ~ ~ ~ o o P o ~ ~ ~ ~ s l l -  ~ ~ o o P l l ~ ~ ~ + P o ~ ~ ~ ~ , , ~ ~ ~ l ~ ~ ~ + ~ Y , ~ , - ~ , o o l ~ .  (63b) 
dr 

The Clausius-Clapeyron relation is given by (23 c).  Continuity of tangential velocity 
at  r = 1 gives 

From matching with the outer solution (as r+oo), 

with a similar expression for h,,, 

4. Results and discussion 
Several features of the moving-drop combustion problem have been systematically 

examined. These are the effects of translational velocity and a non-uniform radial 
velocity field, the roles played by the drop bulk temperature and the injection 
velocity, and the presence of liquid circulation. Mass burning rates have been 
predicted. The drag phenomena associated with moving burning fuel drops have been 
described. Flame shapes and distances have also been calculated. From a detailed 
transient calculation of the drop heat-up, we are able to analyse the role played by 
drop heating on combustion. 
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FIQURE 2. Rate of change of the square of the drop diameter with time. 

We choose to present results for the combustion of an n-heptane drop burning in 
air. Following Law 6 Williams (1972), we calculate the following parameter values 
for this study: 

pg = 0.60 kg m-3, cpg = 3.64 k J  kg-’ K-l, 

Pr = Sc = 1.0, pc = 650 kg m-3, 

#p = 0.1, $k = 0.84, L = 317 k J  kg-l, Tb = 371.6 K, 

T, = 298 K, ( Yo)m = 0.23, W, = 100.2, r ,  = 0.3, 

vF = 1 ,  vo = 11,  

vg = 0.43 x lo-* m2 s-l, 

ad = 0.72 x lo-’ m2 s-l, 

AH, = 45000 k J  kg-’. 

The temporal variation of the square of the diameter for an n-heptane droplet is 
shown in figure 2 for two different drop initial temperatures T,. For a drop initially 
translating with eo = 0.2 (e0 = Urn, RO/ug) and initial temperature T, equal to the 
wet-bulk temperature Twb (calculated to be 359.2 K for the illustration cited), the 
slope of (D/Do)2  decreases continuously with t’ (=  ta,/R;). The decrease in slope is 
due to the drop deceleration caused by the drag that the drop experiences. The 
reduction in forced convection leads to a reduced enhancement in the evaporation 
rate with increasing time. For T, < Twb, under the same initial convective field 
(e0 = 0.2), an initial transient drop heat-up leads to a relatively lower evaporation rate 
for short times (t’ < 0.1). The droplet lifetime is prolonged as a consequence of the 
smaller evaporation rate for short times. The graph also shows that for the same 
initial temperature, the absence of translation prolongs the droplet lifetime further. 

The streamlines and flame position are shown in figure 3 for two different times 
for an n-heptane drop with initial temperature To = 320 K and e0 = 0.1. Since the 
interfacial normal velocity is radially outward, streamlines emanate from the drop 
surface and follow the uniform stream. Near the front of the drop, the radial flow 
and the uniform stream oppose each other. As a result a stagnation point is formed 
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FIGURE 3. Streamlines and flame shapes at two different times. 
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there as shown in figure 3. For this convective situation, the stagnation point is 
situated between the flame and the droplet surface (Aldred, Pate1 & Williams 1971). 
For the parameters considered here, the radial field A,,, which is 1.492 at t’ = 0.01, 
increases to 2.115 as t’ becomes 0.1. This increase causes both the flame and the 
stagnation point to move radially outwards away from the drop. The non-sphericity 
in the flame shape is directly ascribable to the presence of the forced-convection field. 

In figure 4 the heat transported towards the drop from the continuous phase is 
denoted by qg, that required for evaporation is qe and the heat conducted into the 
drop is qd. For a drop that is introduced at its wet-bulk temperature Twb, heat from 
the continuous phase is entirely utilized for fuel evaporation. For drop initial 
temperatures less than the wet-bulb temperature, for some period of the drop 
lifetime, part of the heat input is used for fuel evaporation while the remainder is 
conducted to the drop interior. With increasing surface temperature T,, while qg 
decreases, qe increases. With higher T,, the mass fraction of the fuel at the interface 
is higher, leading to the increased qe. At Twb, qg exactly balances qe. For an initial 
temperature of 320 K, it is evident from the figure that for as much as a third of the 
drop lifetime, substantial heat from the continuous phase is being used for the drop 
heat-up. For drop initial temperatures higher than the wet-bulb value, the interface 
receives heat both from the drop interior and the continuous phase. This results in 
very high values for initial evaporation rates. 

Figures 5(a, b) show the temporal variations of the flamefront standoff ratio R,/R 
and the flame distance Rf /R ,  for different initial temperatures. The results are 
presented for specific angular positions (p = 0, f 1). In figure 5 (a), T, is less than Twb. 
Initially, there is a rapid increase in the flamefront standoff ratio. This is due to the 
sharp increase in the strength of the radial field (characterized predominantly by A,,) 
with higher surface temperatures. When the surface temperature attains the wet-bulb 
value, the radial field becomes a constant, and for ,u = 1.0 the ratio R f / R  almost 
becomes a constant. Experimental results (Law, Chung & Srinivasan 1980) on the 
flamefront standoff ratio show a continuously increasing trend due to fuel-vapour 
accumulation. The present theory does not have this feature, and therefore shows 
a flattening trend. For the angles p = 0 and p = - 1 .O the ratio R,/R increases 
continuously with time because the translational Reynolds number E decreases owing 
to the drag and the reduction in the drop size. Towards the end of the drop lifetime, 
E is very small, so that the flame shape is spherically symmetric. The flame distance, 
however, increases rapidly to a maximum value and thereafter decreases monotoni- 
cally. The flame distance depends on both the radial field and the instantaneous drop 
radius. While the radial field causes the flame to move outwards, the drop regression 
leads to an inward motion. In  figure 5 ( b )  the drop initial temperature is higher than 
the wet-bulb value. Owing to the high evaporation rates during the early part of the 
drop lifetime, the flame is established at a distance far from the drop surface. With 
increasing time and for ,u = 1.0, as the surface temperature approaches Twb the 
flamefront standoff ratio decreases to a constant value. Towards the end of the drop 
lifetime, for p = 0 and p = - 1 .O, a similar behaviour to that observed in figure 5 (a) 
is predicted. The flame distance decreases monotonically, since both the radial field 
and the drop regression rate cause the flame to move inwards. 

The instantaneous drag forces on a moving burning isothermal liquid drop as a 
function of the strength of the radial field due to evaporation are plotted in figure 6. 
At relatively weak radial fields the drag decreases to a minimum. With a further 
increase in A,, the drag increases. The decrease in drag is due to vorticity being 
convected away from the surface, and to the reduction in the pressure drop between 
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FIGXJRE 5. Flame distance and flamefront standoff ratio as a function of time at different 
angular positions: (a )  T,  < Twb; ( b )  T,  > Twb. 
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-0.5 L 
FIQURE 6. The effect of radial field on drag coefficients (density evaluated at reference level). 

the front and the rear of the fuel drop. In fact, for a sufficiently large radial velocity, 
we have a larger pressure at the rear than at the front, thereby causing a negative 
pressure drag (Sadhal & Ayyaswamy 1983). This is the result of a strong inertial 
effect due to the maximum radial velocity at the front of the drop. The normal 
reaction of the momentum flux leaving the surface provides an additional force on 
the drop. Since the maximum flux is at the front of the drop, the recoil is higher at  
the front than a t  the rear. The net effect is an increase in the drag. With increasing 
A,,, this force becomes the dominant effect and results in an increased total drag. 

In figure 7 the total drag and its components computed using the variable-density 
formulation are shown. The total drag calculated from the fixed-density formulation 
is also shown for comparison. The effect of variable density is to reduce the total drag 
values further. The feature that, for a certain range of A,,, both the fixed and the 
variable density formulations of this paper predict drag values lower than that of 
Stokes value is attributable to the proper inclusion of the inertial terms in the 
development of the theory. 

The reduced vorticity at the surface, as discussed earlier, causes the strength I? Rec 
of the Hill vortex to decrease with increasing A,, (figure 8). I? is given in I for the 
fixed-density formulation, whereas B = - uol( 1) for the variable-density solution. 
For a given translational velocity, a t  a sufficiently large radial velocity the internal 
circulation vanishes. A further increase in A,, reverses the circulation. This remarkable 
result arises from the non-uniformity of the radial field. The interfacial radial velocity 
increases from the rear towards the front. This introduces a surface shear stress in 
a sense opposite to that induced by translation. While, with an increasing radial field, 
the shear stress due to the non-uniformity in the normal velocity persists (see A,, 
and uI1(1) in figure 8)) the shear stress resulting from translation decreases owing to 
the convection of vorticity. As a consequence, the internal circulation weakens to a 
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FIQURE 7. The effect of radial field on drag coefficients (variable density). 
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FIQURE 8. The effect of the radial field on liquid circulation, and the extent of 
non-uniformity (A, , ,  u,,(l)). 
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FIGURE 9. Variation in translational velocity with time for a falling burning fuel drop. 

point where the shear due to non-uniform evaporation dominates and causes a 
reversal. 

Temporal variations in the instantaneous velocities (equation (3 1)) for sprayed 
drops with different injected velocities Urn, , (I, 11), and a free-falling drop (111) are 
shown in figure 9. Owing to the smallness of the drop considered, the effect of natural 
convection is negligible. For a free-falling drop the velocity increases to a maximum 
and decreases thereafter. Initially, the drop weight is greater than the drag force, 
leading to acceleration. As the drop velocity increases with time, the drag increases 
and the drop-weight decreases owing to size reduction. When the weight and the drag 
balance each other, the drop attains its maximum velocity. Subsequently, the drag 
force overcomes the weight and the drop decelerates. For high enough initial 
velocities, the drag force overcomes the weight for all times and the drop continuously 
decelerates. The trends observed in the velocity profiles are in qualitative agreement 
with the experimental measurements of Wang, Liu & Law (1984). 

The fixed- and variable-density models predict that the mass burning is enhanced 
in the presence of translation. Drop translation enhances the burning rate by 
convecting the evaporated fuel away from the drop surface and by moving the flame 
front towards the drop. The driving force is thereby increased, and consequently the 
burning rate is higher. For an isothermal drop, combining ( H a ,  b) and (23b), we 
obtain A,, = +LSCA,, (after four iterations we find that T,, is negligible). Using (27), 
the mass burning rate is given by 1 ++Pe (Pe = U ,  RID, is the Pdclet number), 
which is in agreement with Fendell et al. (1966). The variable-density solution for the 
mass burning rate is of a similar form and is given by k/ho = 1 ++ Pe,. It is revealed 
from the variable-density analysis that for calculating enhancement, property values 
should be evaluated at free-stream conditions, so long as the assumption of unit 
Lewis number is invoked. An extensive discussion of experimental results on the 
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enhancement of the evaporation rate due to translation is available in the studies 
of Renksizbulut & Yuen (1983a, 13). 

This work is based on the doctoral dissertation of George Gogos (1986), carried out 
in the Department of Mechanical Engineering and Applied Mechanics a t  the 
University of Pennsylvania. The authors are very grateful to  the Moore School 
Computing Network for computational facilities and the Dean of Engineering for 
granting the necessary computer funds. The authors are grateful to two referees who 
have contributed to  the enhancement of the quality of the paper. 
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